Starsert

$$
\begin{array}{lllllllllllllllll}
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170
\end{array}
$$

$\left.\left|\begin{array}{l}X= \\ 12 \mathrm{~mm}\end{array}\right| \longleftarrow \quad Y=34 \mathrm{~mm} \right\rvert\, \longleftrightarrow$

$\Rightarrow\left|\begin{array}{l}Z= \\ 9 \mathrm{~mm}\end{array}\right|<$
$D D=44 \mathrm{~mm}$

$$
\begin{array}{lllllllllllllllll}
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170
\end{array}
$$

READNG VERNIER CALIPERS

To understand the measurement readings from Vernier Caliper properly, you need to take two readings, first from the Main Scale, then from the Vernier Scale. For example, the Vernier Caliper above shows a measurement reading of $\mathbf{1 1 . 6 5 m m}$, this means that:

The Main scale contributes the main number. This number is taken from wherever the 0 on the Vernier Scale is. In this case you can see that the 0 on the Vernier Scale is just after the $11^{\text {th }}$ millimeter mark, therefore it is 11.

The Vernier scale contributes the two numbers after the decimal point. This number reading is taken from the first line on the Vernier scale to align perfectly with one of the lines on the main scale. In this case it is the line halfway between the 6 and 7 , which gives us a reading of .65

READING VERNIER CALLPERS

READING A MICROMETER

To understand the measurement readings from a Micrometer properly, you need to take two readings, first from the Barrel Scale, then from the Thimble Scale. For example, the Micrometer above shows a measurement reading of 5.28 mm , this means that:

The Barrel Scale contributes the main number. This number is taken from the last visible graduation line on the Barrel Scale, above the horizontal line. In this case you can see that there is no visible line after the $5^{\text {th }}$ millimeter mark, therefore it is 5 .

The Thimble Scale contributes the two numbers after the decimal point. This number reading is taken from the line on the Thimble Scale that aligns perfectly with the horizontal line on the Barrel Scale. In this case, it is the third line after the 25 , which gives us a reading of . 28

READING A MICROMETER

On a Micrometer, there are also lines below the horizontal line on the Barrel. These are not full millimeter marks. These are half millimeter marks. The lines above the horizontal line represent full millimeters, the ones below represent the half millimeter in-between them.

For example, there are 3 visible lines after the 5 millimeter mark on the barrel scale. This does not mean it is 8 mm . This is showing the half millimeter mark after the 6 mm mark, so it is 6.5 mm

From this we need to add the reading from the Thimble Scale, which we can see is showing .31
$6.5+.31=6.81$

READNG A MICROMETER

IDENTIFYING DIMENSIONS

When identifying the dimensions of a piece of flat bar, first, look at the cut edge.
This will give you your Width \& Thickness. Once you have established them, measure away from this edge to get the Length.

See if you can Identify the dimensions of this piece!

Width	Thickness	Length
50 mm	10 mm	242 mm

When identifying the dimensions of a piece of tubing, first, look at the cut edge.
This will give you your Width \& Thickness. Once you have established them, measure away from this edge to get the Length. When measuring tubing, its also important to measure the Wall Thickness, which is how thick the steel is that the tubing is made form. This is easily done with a Micrometer or a Vernier Calliper.

See if you can Identify the dimensions of this piece!

Width	Thickness	Length	Wall Thickness
25 mm	25 mm	165 mm	2.5 mm

FLAT BAR MEASURMENT

Piece	Width (mm)	Thickness (mm)	Length (mm)
A1	65	10	32.00
A2	65	10	50.10
A3	65	10	58.21
A4	50	10	28.05
A5	50	10	40.55
A6	50	10	60.95
A7	50	6	41.52
A8	50	6	51.20
A9	50	6	70.46
A10	25	15	30.66
A11	25	15	47.34
A12	25	15	65.18

FLAT BAR MEASURMENT

FLAT BAR PRICES

Below are the Lineal Metre prices (how much it costs to buy 1 metre) of common flat bar sizes found in the workshop.

\$1.80

$\$ 2.25$

\$ 4.97

\$5.@.4

\$10,00 6

$\$ 7.50$
50

10

\$12వ. 15

FLat Bar Picicing actuvit

To figure out the actual cost of the pieces you measured, you will have to:

1) Put the length of each piece in mm in the first column.
2) Convert the Length from mm to m . Which is easy! All you have to do is divide it by 1000! Put the answer in the second column.
3) Put in the lineal metre $(\mathrm{L} / \mathrm{m})$ price of each piece in the third column.
4) Multiply the length (m) by the lineal metre (L / m) price and put the answer in the fourth column.

Piece	Length (mm)	Length (m)	L/m Price	Actual Cost for Piece
A1	$32.00 \div 1$	0.03200	\$16.15	\$0.52
A2	50.10	0.05010	\$16.15	\$0.81
A3	58.21	0.05821	\$16.15	\$0.94
A4	28.05	0.02805	\$12.50	\$0.35
A5	40.55	0.04055	\$12.50	\$0.51
A6	60.95	0.06095	\$12.50	\$0.76
A7	41.52	0.04152	\$7.50	\$0.31
A8	51.20	0.05120	\$7.50	\$0.38
A9	70.46	0.07046	\$7.50	\$0.53
A10	30.66	0.03066	\$5.42	\$0.17
A11	47.34	0.04734	\$5.42	\$0.26
A12	65.18	0.06518	\$5.42	\$0.35

FLat Bar Picicig actuivt

To figure out the actual cost of the pieces you measured, you will have to:

1) Put the length of each piece in mm in the first column.
2) Convert the Length from mm to m . Which is easy! All you have to do is divide it by 1000! Put the answer in the second column.
3) Put in the lineal metre $(\mathrm{L} / \mathrm{m})$ price of each piece in the third column.
4) Multiply the length (m) by the lineal metre (L / m) price and put the answer in the fourth column.

Piece	Length (mm)	Length (m)	L/m Price	Actual Cost for Piece
A13	60.49	$\div 1000$	0.06049	x

TUBING MEASURMENT

Piece	Width (mm)	Thickness (mm)	Length (mm)	Wall Thickness (mm)
B1	25	25	32.00	1.6
B2	25	25	57.57	1.6
B3	25	25	74.93	1.6
B4	50	25	72.32	3
B5	50	25	52.96	3
B6	50	25	121.80	3
B7	35	35	30.28	2
B8	35	35	54.19	2
B9	35	35	92.66	2

TUBING MEASURMENT

Piece	Width (mm)	Thickness (mm)	Length (mm)	Wall Thickness (mm)
B10	50	50	39.49	2
B11	50	50	50.20	2
B12	50	50	114.28	2
B13	40	40	43.40	2
B14	40	40	58.06	2
B15	40	40	113.82	2
B16	30	30	48.68	2
B17	30	30	59.25	2
B18	30	30	97.29	2

TUBING PRICES

Below are the Lineal Metre prices (how much it costs to buy 1 metre) of common Steel Tubing Sections found in the workshop.

Wall Thickness

35
35

TUBING PRICING ACTVITY

To figure out the actual cost of the pieces you measured, you will have to:

1) Put the length of each piece in mm in the first column.
2) Convert the Length from mm to m . Which is easy! All you have to do is divide it by 1000! Put the answer in the second column.
3) Put in the lineal metre $(\mathrm{L} / \mathrm{m})$ price of each piece in the third column.
4) Multiply the length (m) by the lineal metre (L / m) price and put the answer in the fourth column.

Piece	Length (mm)	Length (m)	L/m Price	Actual Cost for Piece
B1	$39.49 \quad \div 1$	0.03249	\$4.4	\$0.14
B2	57.57	0.05757	\$4.40	\$0.25
B3	74.93	0.07493	\$4.40	\$0.33
B4	72.32	0.07232	\$11	\$0.80
B5	52.96	0.05296	\$11	\$0.58
B6	121.80	0.12180	\$11	\$1.34
B7	30.28	0.03028	\$7.55	\$0.22
B8	54.19	0.05419	\$7.55	\$0.41
b9	92.66	0.09266	\$7.55	\$0.70

TUBING PRICNG ACTWITY

To figure out the actual cost of the pieces you measured, you will have to:

1) Put the length of each piece in mm in the first column.
2) Convert the Length from mm to m . Which is easy! All you have to do is divide it by 1000! Put the answer in the second column.
3) Put in the lineal metre $(\mathrm{L} / \mathrm{m})$ price of each piece in the third column.
4) Multiply the length (m) by the lineal metre (L / m) price and put the answer in the fourth column.

Piece	Length (mm)	Length (m)	L/m Price	Actual Cost for Piece
B10	$39.49 \div 1$	0.03949	\$11.20	\$0.44
B11	50.20	0.05020	\$11.20	\$0.56
B12	114.28	0.11428	\$11.20	\$1.28
B13	43.40	0.04340	\$8.80	\$0.38
B14	58.06	0.05806	\$8.80	\$0.51
B15	113.82	0.11382	\$8.80	\$1
B16	48.68	0.04868	\$6.20	\$0.30
B17	59.25	0.05925	\$6.20	\$0.36
B18	97.29	0.09729	\$6.20	\$0.60

SHEET METAL LEASUREMENT

For this activity, you will first need to measure all the pieces of Sheet Metal in the box.

Piece	Length (mm)	Width (mm)	Thickness (mm)
1	93	109	0.6
2	100	280	0.6
3	101	186	0.6
4	92	112	0.8
5	88	141	0.8
6	92	163	0.8
7	128	256	1
8	92	205	1
9	205	217	1
10	37	109	1.2
11	106	108	1.2
12	109	158	1.2

SHEET METAL COST

In the workshop we cant buy small pieces of Sheet Metal, we have to buy a big sheet and cut it up into smaller pieces. The sheets we buy are $2400 \mathrm{~mm} x$ 1200 mm and come in different thicknesses.

Thickness

1.2 mm

Cost per Sheet
\$110.12
$\$ 98.25$
$\$ 81.73$
${ }_{0 . \mathrm{smm}} \Rightarrow \$ 55.32$

SHEET METAL COST

To figure out the actual cost of the small pieces of sheet metal you measured, you will have to:

Area of Small Piece

Area of Large Sheet

$$
\begin{array}{l|l|l|l}
\mathbf{X} & \begin{array}{c}
\text { Cost of } \\
\text { Sheet }
\end{array} & =\begin{array}{c}
\text { Cost of } \\
\text { Piece }
\end{array}
\end{array}
$$

So to figure out the cost of Piece 1:

SHEET METAL COSTING

ұәәчs рәz!uenןeg muót
шощэ әреш słued IIV

Piece	Length (mm)	Width (mm)	Thickness (mm)
Base	365	330	1
Base End \#1	146	110	1
Base End \#2	146	110	1
Lid	330	247	1
Lid End \#1	146	70	1
Lid End \#2	146	70	1

WORKANE OUT

WORKANE OUT

